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The analysis and experimental verification of a fourth order model of the

arm/sensor/environment system plant, to be used in evaluation of force
control strategies are presented. Both the undamped and under-
damped cases are investigated. Approximations and qualifications,
based on the reality of our experimental system, help reduce the solu-
tion to just a few dominant terms. Comparing these terms with exper-
imental data of the system undergoing small oscillations yields
approximate values for all of the parameters in the model. To justify
the obtained values and thereby the approximations used, two mea-
sures are taken. First, a simulation of the fourth order model is per-
formed, and compared against experimental data obtained from the
CMU DD Arm II system. Second, a stability analysis of several force
control schemes acting on the modelled plant is reviewed and com-
pared against experimental tests of the controllers. In both cases, the
simulation and analysis match closely with the experimental results,

confirming the validity of the plant model.

sssecese .. .

large number of capabilities needed for automation re-
quire control of the forces of interaction between a robot

and its environment. Examples include pushing, pulling,
scraping, grinding, twisting, etc. While performing these
tasks, the system may be considered to consist of two compo-
nents: the force feedback controller and the arm/sensor/envi-
ronment plant. Many types of algorithms have been proposed
for force control of robots [15]. However, analysis of them is of-
ten based on an assumed plant model, with parameter values
that are not experimentally derived [4,2,1]. Alternatively, some
researchers have experimentally developed a compensator that
works for their plant [16,5,6]. But this approach often yields
little understanding into the physics of the plant, preventing
analysis of alternative compensators. The obvious merger of
these two solution techniques requires the experimental ex-
traction of a physical model to
be used in the design and
analysis of compensators. This
paper describes in detail the
first part of this solution: ex-
perimental extraction of phys-
ical system model parameters.
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Elsewhere, we have used the parameters in the model to ana-
lyze the wide variety of force control strategies, and confirmed
the analysis and model with experimental implementation of
the strategies [11,12].

In order to have a basis for the experimentation presented
herein, a fourth order plant model has been hypothesized,
based on an assumption that the first mode of vibration is
dominant in the system components [9,3]. This model is

shown in Figure 1, where f is the actuation force; x, is the

measured position of the arm; x is the position of the environ-

ment; and m, &, and ¢ are the mass, stiffness, and damping pa-
rameters. This is similar to the mode] presented in [4]. Howev-
er, the following analysis will result in different parameter val-
ues for the system, and leads to different predicted behavior for
the force controllers having
this system as a plant [11].
Section 2 outlines a vibra-
tion analysis of the model for
the undamped and under-
damped, low frequency oscil-
lation cases. Also presented is
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an approximate relation between the measured force and the
position and velocity of the first oscillatory mass. Section 3 re-
views the formulation of force versus position/velocity ellipses
representing damped oscillations. Then Section 4 presents the
methods and results for static and low frequency oscillation
experiments. Step by step, it is shown how all system parame-
ters are extracted,-either directly or through judicious approx-
imations. Section 5 presents the results of using the extracted
parameters in a simulation of the fourth order system, show-
ing favorable comparison with the experimental data. Finally,
Section 6 reviews the results of utilizing the derived model as
a plant in explicit force control schemes. It is shown that this
analysis correctly predicts the experimentally measured re-
sponse of the system under several force control strategies.
The correct predictions further confirm the validity of the
model, and the extracted parameters.
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Figure 1. General fourth order model of the arm, sensor, and environ-
ment system.

VIBRATIONAL ANALYSIS

This section provides a vibration analysis of the model shown
in Figure 1. Similar analysis can be found in many standard
physics textbooks [7]. However, the analysis here deals with
the asymmetric case and an approximate result will be pre-
sented for the case of underdamped vibration.

Using the general solution of x=Ce*  the equations of mo-
tion for the model may be written as:
- (Czp + k'_)) f
0 (1)

Xl [
me2+ch+kB Xy

where p is a complex number (p = o+ i®) and

2
mup-+c,p+k,

‘(Czp + kz)

k,=k +k, Cy=Cl Ty (2)
kB:k2+1r3 Cp=Cy+Co (3)

The characteristic equation may be obtained from Equa-
tion (1) with 7=0:

4m m,+ 3(m c.+m,c,)
pomymptp Mmpcy+m,cy
+p2(mBkA+mAkB+CACB-022)

plcph, v e ky 20, k) 4 Uk ky kD=0, (4)
For our experiments with the CMU DD Arm II, kl =0 since

the manipulator has no gearing, and no position dependent
term is used in the controller during model identification. It
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is also assumed that k2 >>k3, since k2 is provided by the alumi-
num link and sensor stiffness, whereas k3 represents a softer

environment composed of a cardboard box with an aluminum
plate resting on it. Using these assumptions about the stiffness
parameters, the eigenvalues for this system in the undamped

case (c1:c2:c3:0) are:

ky 1 1 5
0~ |———andw, = kQ[—+—) (5)
my+mg my Map

These results make intuitive sense. The lower frequency o,
corresponds to the case ofmA and mg acting as a rigid body os-
cillating on kB' Similarly, the higher frequency , corre-

sponds to the case of m, and m, oscillating out of phase on

A B
spring k., neglecting any effect of k...
2 3

In the damped system, solving for p will yield two complex
solutions and their conjugates. For the underdamped case, the
poles will be close to the undamped poles, but moved slightly
to the left of the imaginary axis. Considering the case of the

low frequency oscillation, m, and mp oscillate in phase on &,

with damping from only N and Cq This is essentially a second

order system with poles:

(c;+c3)? k,

Cl+()3
P= 2(my+mp) 4(mA+mB)2_ (m,+mpg)

indicating that the decay parameter is

C1+C3

O e (7)

This estimation will prove useful later in the paper when
analyzing data of the oscillations of the real system.

This low frequency approximation, however, precludes the
measurement of force, which depends on the compression of
spring k2:

(x,-x,) (8)

f :ksAxs:k2 B TA

m
where s indicates the sensor stiffness and compression. A fur-

ther complication is the fact that it is not possible to directly
measure the value of Xg (at least with our experimental sys-

tem).
One possibility for determining an analytic expression for
fm is to solve Equation (4) for p exactly, and substitute these

solutions into Equation (1) to obtain the relation between x "

ande. However, this brute force method would provide an al-

gebraically complicated solution, yielding little intuitive in-
sight. Instead, we have previously shown [9,10] that the trans-
fer functions for xA/xB given in Equations (1) can be used in
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Equation (8) to obtain an approximation of the measured force
in terms of only X, (and its derivative):

k ky
= —=Xx,+|Cc,—C,+ 57— |X4
fm a'xA |: 1 3 kz(x:| (9)

= —K'x, - C'iy (10

where K" and C’ are the effective stiffness and damping, and o
is the ratio (m , + mB)/mA [10].

A
The relationship of fm tox ') Seems reasonable — the mea-
sured force is equal to the value of -k3 X maodified only by the

parameter o. But the value of C” seems strange at first glance.
Obviously, the introduction of damping to the system can

make the measured force proportional to the velocity, x,.

However, it can be seen that this term may take on negative
and positive values. For positive values, it appears at first that
the system is not conservative. But a very simple and intuitive
explanation can be provided to show that the system remains
a conservative one.

When the system is oscillating at the low eigenfrequency
the masses are moving symmetrically, with m ) having a

slightly larger amplitude than mp, [10]. As m, moves toward

A
the environment, k2 is compressed and a force is measured.

However, the dampers < and o resist the motion ofmA. Thus,

they both diminish the magnitude of the measured force. This
is in contrast to the force caused by Cq which resists the mo-

tion of m p away from m ,, increasing the measured force.

n

In summary, the introduction of damping to the oscillatory
system has caused a change of phase of the oscillations. This
phase change shows up as a velocity term in our approxima-
tion for the measured force. In the next section the effects of
this phase change on the system will be detailed.

DAMPED OSCILLATIONS

When damping is added to an oscillating system, energy is lost
during the cycle of motion. If the oscillation is maintained by
a driving force, then the energy lost due to damping is re-
placed every cycle. However, the addition and subtraction of
energy are not in phase. If they were, the damping would be in-
stantaneously negated, and the system would oscillate as if it
were undamped.

Consider the fourth order system that we have been analyz-
ing. Equation (10) shows that this may be thought of as a sec-
ond order system with an arbitrary mass on spring and damp-
er, K" and C’. In this reduced model, the measured force fm is

equivalent to the sum of the forces experienced by the mass:

f=mi=~-Kx-Cx (11)
(For convenience, the subscripts have been dropped.) For such
a system, the quasi-static motion of x would yield a straight
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line of slope -K” and maximum x deviations of 4, as shown in
Figure 2. (Note, this figure contains an offset fo = -K’x0 which

may be added to both sides of the above equation.) For the dy-
namic situation in which the damped system is driven so that
there is no loss in amplitude, the force is described by Figure 3.

force #(x)

o

%A % oA

position x
Figure 2. Linear relationship of force to displacement.
|
z
®
5
fo
XA %o Xo+ A position x

Figure 3. Force as a function of displacement with damping present.

It is no longer a straight line but a loop. This makes intui-
tive sense, since the value of fis no longer dependent on just
X, but also on the direction of motion. Motion in the positive
direction causes the measured force to be reduced by a nega-
tive damping force. Motion in the negative direction causes
the measured force to be increased by a positive damping
force.

It has been shown that this loop is an ellipse for steady state
oscillations [8,10]:

2
(FD]“ (x)2
TAe) *\a) =

To obtain the direction of travel about this curve note that
when passing through X, and moving in the negative x direc-

12)

tion, the damping force, —Cx, must be positive for C’>0. Thus,
for C’>0, the direction of travel around the loop is counter-
clockwise. For C'<0, it is clockwise.

However, this is just the description of the damping force.
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To get the value of the measured force we must add the spring
force as in Equation (11). This is the equivalent of adding a line
to an ellipse. The addition of a line to an ellipse mathematical-
ly yields a rotated ellipse, but the semi-major axis is not paral-
lel to the line. Since the slope of the line added is important,
we will think of the new contour as a skew ellipse. Thus, the
addition of the spring force to the damping force yields the
measured force as a skew ellipse with an axis at slope -K’, as
shown in Figure 3. -

A similar analysis may be performed for the curve of f(x)
which again yields an ellipse. The direction of travel about this
loop may be obtained by considering the situation at the ex-
tremes of oscillation when the velocity is zero. When switch-
ing from a positive to negative velocity, the force must be in
the negative direction. Thus the direction of travel is clockwise
for K'>0.

Again, it is necessary to add an offset to obtain the mea-
sured force. From Equation (11) we see that we must add the
damping force. This again yields a skew ellipse with an axis at
slope -C’, as shown in Figure 4.

force f(v)

&

Yo velocity v

Figure 4. Force as a function of velocity with damping present in the os-
cillating fourth order system.

Finally, if the system is not driven to maintain a constant
amplitude the oscillations will decay. This causes the continu-
ous elliptical curves to change to elliptical spirals that con-
verge on the ellipse centers.

EXPERIMENTAL DATA

To test the model presented, we have obtained experimental
data which characterizes the arm and environment system un-
der small oscillations. The experimental setup is shown in Fig-
ure 5.

————arm
force sensor

/ probe and weight

aluminum plate

///,/ cardboard box
—__—table

Figure 5. Experimental setup for force oscillation experiments.
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The environment is a cardboard box with an aluminum
plate resting on it. The box is resting on a table that is consid-
erably stiffer than the box, and is therefore considered ground
for these tests. The force sensor is mounted on link six of the
CMU DD Arm II. Attached to the force sensor is a steel probe
with a brass weight on its end. The brass weight serves as an
end effector substitute and provides a flat, stiff surface for ap-
plying forces on the environment.

The first test was to determine the stiffness of the environ-
ment. This was done by quasi-statically depressing the box
with the CMU DD Arm I1. The resultant force versus position
diagram is shown in Figure 6.

TN

» N
' AN
: \\\
“, N
A\

~— MezForc_wd[2] \

£ L T 1 1T T T T R | T I 1T IS TR 6 )

meters

Figure 6. Force versus position data for arm pushing quasi-statically on
environment. The slope is approximately ko= 9340 N/im.

The graph is linear with a slope of 9340 N/m. This slope is
equal to the sequential combination of k2 and k3. However,

since k2 is much larger, the measured spring constant can be

reducedtok =~k ~ 10* N/m.
meas 3

(Note: In this and all subsequent data charts presented, the
parameter fm may be represented by MezForc_wd[2], the z

component of the measured force in the world frame. Similar-
ly, the parameter x 4 May be represented by MezP|[2], the z

component of the measured position in world frame. Also

flx4) is represented by MezXVel_wd[2], the z component of
the measured Cartesian velocity in world frame.)

Another test was performed to measure the stiffness of the
force sensor. To do this, the sensor was removed from the arm
and compressed in a C-clamp. Compression of the sensor was
measured with a micrometer, and the forces were measured by
the sensor itself. The data is shown in Figure 7. The measured

spring constant, lrs, was about 5 x 1[)6 N/m.
We have previously described how k2 is less than lrs by a

geometric proportion factor due to the concatenation of the
aluminum sensor with the aluminum arm [10]. For the CMU

IEEE Robotics & Automation Magazine - 7
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force Kx), Newtons
8

180}

0
04785 0.47%0 04795 0.4000 0.4805 64870 04815 0.4820

position x, inches

Figure 7. Force versus position data for static compression of force sensor
with a clamp. The slope is k= 5 x 106 N/m.

DD Arm II this factor is on the order of ten. Thus k2 will be
about an order of magnitude less than the force sensor stiff-

ness of 5x 10° N/m. We also have also assumed in Section [2]
that /r2 >>k3, and therefore k2 is at least an order of magnitude

larger than the environmental stiffness of 10* N/m. This im-
plies, k,<<k, <k_or 10°N/m < k, < 5x 10°N/m. We let

5
k2~5x 10%.

Given this initial data, and the model development of the
previous sections, it is possible to analyze the response of the
entire system to small oscillations. To obtain the data, the arm
was placed against the environment as shown in Figure 5. The
arm was given an open-loop command to exert 20 N of force
against the surface. (Incidentally, the measured open-loop
force of 18.6 N indicates the need for closed-loop force con-
trol.)

A damping gain ofc1 = 10 N-s/m was also employed. This

value of damping was chosen since it provided reasonable
damping during position controlled motion without surface
contact. During contact, the stiffness of the environment
makes this gain too small for critical damping. However, it
could not be increased for several reasons directly effecting
system stability: sampling rate, sensor noise, and plant model
consistencies [14].

To measure the system response, the environmental sur-
face was struck softly so as to excite only low frequency oscil-
lations. The measured force, position and velocity of one of
these tests is shown as a function of time in Figure 8. While
damping is present, the system is obviously underdamped,
which matches our earlier assumptions.

First, the frequency of oscillation in Figure 8 is about 90 ra-
dians/second. Since only the low frequency mode of oscillation

has been excited, , in Equations (5) gives m, +mpg = 1.2kg.
Second, the environmental damping parameter ¢, may be

obtained using Equation (7). Figure 9 is a plot of the natural
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logarithm of the absolute value of the peak oscillations of the
measured force. The slope of the line in this graph gives the

value of the decay parameter 6 = —11.3. Thus, c, = -2(mA +

mB)cs—c1 =17 - s/m.

— ((MezP[2]+.11773)*10000}
s b ---- (MezForc_wd[2]-18.6)
B —— (MezXVel_wd[2]*66)

14 1.45 15 155 16 165 L7 175 1.4 1.85

Time(seconds)

Figure 8. The measured time response of force, position, and velocity af-
ter the system has been excited.

200,

0.50

natural log of force I(t), Newtons
§
+

0.00/ 3 i L

0.50F

-200L

Figure 9. The measured damping of the environment. The slope of -11.3
is the decay constant of the environment.

The above time response of force, position, and velocity,
may also be graphed to show the damped response. Figure 10
shows the measured force as a function of displacement. The

slope of the elliptical spiral vields K'= 10* N/m. Figure 11
shows the measured force as a function of velocity. The slope
of this elliptical spiral indicates that C’= 66 N-s/m, which is
greater than zero, as explained previously. Figure 12 shows
that these are valid values of K" and C” by comparing the mea-
sured force with the force calculated from Equation (10).

June 1994
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These values of K” and C’ may be used in a comparison of
Equations (10) and (9) to provide estimates of the remaining

model parameters: m o Mg and Cyr

Newtons
S

W OIS AR TO0S 118 11795 178~ V85 <1178 -1 T35~ T 77 1183 1376 11735 7173 1148
meters

Figure 10. The measured response of force versus position for the fourth

order system with damping present.

u
—— MezForc_wd{2]

n

ar

Newtons
B

14 beeien —_— T Twmm———
D04 0035 0.03 0025 0.01 HMS 0010005 0 0005 DO 0I5 (.02 0025 0.03 0035 004 0.045

meters/second

Figure 11. The measured response of force versus velocity for the fourth
order system with damping present.

First, we know that K= k3/oc. Since both K" and k3 are ap-

proximately 10* N/m, a.= 1. However, o, cannot be exactly uni-

ty or mg is zero. Therefore, we infer the data indicates that m,

> p. We will assume that a=1.1, or equivalently, mg is less

than m, by an order of magnitude: m, = 0.1 m,. Therefore,

B

= 1.2kg, we have m =

from our previous result that m, +m ”

1.1kg and mBzO.lkg.
Second, we know that from Equations (10) and (9) that <,
=~ (o kz/ks)(C’ -cl + ¢3) = 4400-s/m.

B
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— ((MezXVel_wd[2]*66)-((MezP[2}+.11773)*10000))
s b ---- (MezForc_wd(2]-18.6)

Time(seconds)

Figure 12. The addition of the measured position and velocity, multiplied
by the determined constants, yields a close match to the measured force.

In review, the following parameters values were obtained
using the described means and assumptions:

kl = 0 N/m Direct Drive motors have no intrinsic stiffness,

and none was provided actively.
k3: 104 N/m Quasi-static measurement of force versus dis-

placement assuming & >« g

ks =5x 1()6 N/m Direct measurement with the force sensor
and a micrometer.
ky= 5% 10° N/m Condition that k, <<k, = (10)k

o

m, + m, = 1.2 kg Measurement of oscillating frequency,

A B
assuming low frequency underdamped vibration.
¢, = 10 N- s/mControlled damping.

Cqy= 17N - s/m Measured from decay envelope.

K= 1()4 N/m Measurement of force versus position loop
skew.

C’= 66 N- s/m Measurement of force versus velocity loop
skew.

m, = 1.1 kg, mB=O.1 kg K'= k3 indicates o.— 1. Assume
o=1.1or mA/mB = 10.
c,= 4235 -s/m From calculation based on small damping

approximation.

In the case of different arm configurations, the only param-
eter to change would be m,, due to the change in the arm in-

ertia [11]. From Equations (5), (7), and (10) it is apparent that

a change in m , causes a change in the frequency of oscillation

of the system, and rate of decay of these oscillations. This
change might manifest itself as a change in the parameters K”
and C’, and in the slopes of the corresponding ellipses. Howev-
er, if singular configurations of the manipulator are avoided,
the inertia of the arm typically varies by less than an order of

IEEE Robotics & Automation Magazine - 9
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magnitude. Further, for our experiments the manipulator was
close to a minimum inertia configuration. Therefore, higher
inertia configurations would not invalidate the approximation
of o— 1, nor greatly change K" and C’.

SIMULATION

To validate the parametric values obtained through experi-
mentation and the approximations previously outlined, the
values were employed in a simulation of the original fourth or-
der model represented by Equations (1). Figure 13 shows the
time response of the measured force, position, and velocity.
This compares favorably with the real data in Figure 8. The fre-
quency of the simulation is 84 radians/second, compared with
90 radians/sec for the data. .

— (xa*10000)
e (xa0"66)
© ——f

Newtons

008 ¥ a3 2 25 3 35

Time{seconds)

Figure 13. Simulated time response of position (solid), velocity (short
dash), and force (long dash), using the estimated parameter values.

Newtons
&

Figure 14. Simulation result of force versus velocity using estimated pa-
rameters.

The simulated force versus velocity loop is shown in Figure
14

This is compared to the real data in Figure 11. The slope of
64-s/m is very close to the data value of 66-s/m. Notice too, that

10 - IEEE Robotics & Automation Magazine

this graph exhibits a positive skew axis, further justifying the
earlier explanation of this phenomenon in Section 3.

The simulated force versus position loop is shown in Figure
15. This is compared to the real data in Figure 10. Although
the slope of the skew axis is smaller in the simulation by about
30%, this can be attributed to the model inaccuracies and ex-
perimental error. Since we have been mainly concerned with
the order of magnitudes of the spring constants, this is a rea-
sonably good result.

Newtons
5

-4

50

60,

0008 U004 0030002 0001 0 DOOL G002 O.0G3 0004 0005 0006 DT 0.008

meters

Figure 15. Simulation result of force versus position using estimated pa-
rameters.

The slope of the force versus position curve is determined
mainly by the value of kg. To improve its slope, k3 can be in-

creased by 30% to 13000 N/m. Changing k3 alters other pa-

rameters also. The new values of the altered parameters are:
mA=1.46kg, mB=0.14kg, c2;365]N- s/m, and Cy= 26.3 N- s/m.

The use of these parameters does not greatly alter the appear-
ance of the previous simulation results, except to make the
slope of the f{x) loop about the same as the experimental data
{10].

THE RESULTANT MODEL

The purpose of this analysis has been to obtain reasonable es-
timates of the system parameters. These values provide a plant
model for developing and evaluating force control strategies.
For these purposes, even order of magnitude approximations
will prove to be acceptable. The correspondence between ex-
perimentation and simulation indicated that the developed
fourth order model is accurate and useful.

This fourth order model has been used as the plant to cor-
rectly predict the behavior of a spectrum of force control strat-
egies [11]. However, for that type of analysis it is more useful
to use the pole/zero representation of the plant. The locations
of the poles and zeros for this plant are shown in Figure 16.
Figure 17 shows this same plot, but ignores the leftmost, in-
significant pole on the real axis at -28000.

The complex pole/zero pairs are due mainly to the environ-
ment. The other pole pair is due mainly to the sensor dynamics. It

June 1994
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can be seen that the sensor poles are fairly far removed from the en-
vironmental ones, and are located farther into the left half plane.
Usually, the leftmost sensor pole can be ignored.

It is important to note that the derived model parameters
make the fourth order system extremely different than the one
presented in [3]. In that discussion, based on theoretical anal-
ysis only, it was assumed that two {complex conjugate, sensor)
poles are to the right of two (environmental) pole/zero pairs.
As has been shown from experimental data, the sensor poles
are to the left and are real, for a very common environment.
This difference in the arm/sensor/environment model results
in erroneous predictions about the stability properties of com-
mon force control schemes [11]. For instance, integral gain
control has been predicted to be a poor controller, while pro-
portional gain control has been predicted to be always stable
[3].

Figure 17. A polelzero plot of the modelled system showing all but one
pole which is on the real axis at approximately -28000.

A more valid analysis of force control schemes can be ob-
tained from using the experimentally obtained model param-
eters. Figures 18- 23 show the root loci and Bode magnitude
plots for proportional-derivative, proportional, and integral
gain force controllers acting on the arm/sensor/environment
plant.

The PD controller analyzed in Figure 18 appears best since
it keeps the poles in the left half plane. However, Figure 19
shows that it acts as a band-pass filter for the resonance fre-
quencies of the system. This behavior and its amplification of
noise, make it unstable in practice (without the addition of
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Figure 18. Root locus for the fourth order model under derivative gain ex-
plicit force control.

103 T

LALLM N 2 101 B N 64 s 2

TR RTE BTSRRI Leiatay)

o1 300 101 10z 105 104
frequency(rad/s)

Figure 19. Bode plot for the fourth order system under integral gain ex-

plicit force control. The resonance peak corresponds to the natural fre-

quency of the environment, Thus, this controller acts as a band pass filter

for the resonant frequency of the system.

10-5 Abd g

passive compliance) [11]. Alternatively, the proportional and
integral controllers of Figures 20-23 have about the same pole
structure near the origin, with the exception of the integral
controller pole on the real axis. While both controllers can
make the system unstable, the integrator pole provides valu-
able low-pass filtering as shown in Figure 23, and eliminates
steady state error at lower gains.

400
300 o
200 % E
100 0
§ o -
-100 “~..
-200 "
2300 o~ 4
) 150 “100 50 0 50
real

Figure 20. Root locus for the fourth order model under porportional gain
explicit force control. The locus first crosses the imagainary axis for
K,~12

Figures 24 and 25 show the best responses obtained for the
proportional and integral gain controllers. Contrary to the
previous predictions, but consistent with the predictions
based on our experimentally derived model, the integral con-
troller is superior. Further, experimentation showed that the
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Figure 21. Bode plot for the fourth order system under proportional gain
explicit force control. The resonance peak occurs near the natural fre-
quency of the environment. The gain margin is 1.2 at ® = 118 rad/s,
which corresponds to the root locus crossing to the right half plane in
Figure 20.
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Figure 22. Root locus for the fourth order model under integral gain ex-
plicit force control.
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Figure 23. Bode plot for the fourth order system under integral gain ex-
plicit force control. The resonance peak corresponds to the natural fre-
quency of the environment, but remains under a magnitude of one for
gains of ~ 10. The gain margin is 28 at w = 85 rad/s, which corresponds
fo the root locus crossing to the right half plane in Figure 22.

proportional controller could easily be made unstable [13], di-
rectly contradicting previous predictions.

These results indicate the need for experimentally derived
parameters, and validate the fourth order model of the system.
The results also validate the model parameters obtained, as
well as the method used to obtain them. However, it is impor-
tant to note that it may not be necessary to employ this same
method to analyze all arm/sensor/environment systems. In-
stead, a fourth order system assumption may be made in an
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Figure 24. Experimental data of proportional gain explicit force contro
with feedforward and K| H= 0.5.
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Figure 25. Experimental data of integral gain explicit force control with
feedforward and Kg= 22.5.

adaptive scheme and real-time parameter identification may
be possible. The analysis presented, however, has the benefit of
giving physical insight into the derived model and its assigned
parameters.

CONCLUSION

This paper has presented an analysis of an arm/sensor/envi-
ronment model for force control of a robot manipulator in
contact with its environment. First, a fourth order model was
presented and vibration analysis of it was performed for both
undamped and underdamped cases. This analysis described
the oscillation modes of the system and predicted the form of
the curves for force versus position and velocity. Experimental
measurement of the real arm/sensor/environment system
confirmed this predicted behavior. Further, quantitative anal-
ysis and judicious approximations made it possible to extract
values for all system parameters. A simulation of the system
using the extracted parameters matched the real system re-
sponse, and confirmed the correctness of the values. Analysis
of force controllers with this plant provided new predictions
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about the efficacy of each. Finally, some experimental results
were provided, which matched the analysis, and thereby vali-
dated the plant model.

This research was valuable for three major reasons. First,
real parameter values for the fourth order model were deter-
mined. Second, the match of the simulation with the real sys-
tem response confirms the correctness of using the fourth or-
der model, as well as the extracted parameter values. Third,
the model has been used to analyze the efficacy and stability of
many proposed force control strategies, and to understand the
experimental results of tests of them [11,12].
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